A deep learning approach to predict Hamburg rutting curve

نویسندگان

چکیده

The Hamburg wheel tracking test (HWTT) is a widely used testing procedure designed to accelerate and simulate the rutting phenomena in laboratory. Rut depth, as one of outputs HWTT, dependent on number parameters related mix design conditions. This study introduces new model for predicting depth asphalt mixtures using deep learning technique - convolution neural network (CNN). A database containing 10,000 data points from comprehensive collection HWTT results was develop CNN-based machine prediction model. has been formulated terms known influencing mixture variables such binder high-temperature performance grade, type, aggregate size, gradation, content, total recycling parameters, including temperature passes. can be tool estimate rut when laboratory not feasible or cost-saving, pre-design trials.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

A Deep Learning Approach to Machine Transliteration

In this paper we present a novel transliteration technique which is based on deep belief networks. Common approaches use finite state machines or other methods similar to conventional machine translation. Instead of using conventional NLP techniques, the approach presented here builds on deep belief networks, a technique which was shown to work well for other machine learning problems. We show ...

متن کامل

A Deep Learning Approach to Identify Diabetes

The primary objective of this paper is to predict onset of using deep learning and also as to predict the risk factor and severity of diabetics. The methods are implemented on in a conditional data set of diabetes. The model involves deep learning, in the form of a deep neural network through which we are able to apply predictive analytics on said diabetes data set and obtain optimal results. A...

متن کامل

Cloud Computing; A New Approach to Learning and Learning

Introduction: The cloud computing and services, as a technological solution for developing educational services, can accelerate the provision and expansion of these highly useful services. This study intended to provide an overall picture of practical areas of learning services based on cloud computing teaching and learning equipment. Methods: This was a theoretical hybrid research study in whi...

متن کامل

A Deep Learning Approach to Unsupervised Ensemble Learning

We show how deep learning methods can be applied in the context of crowdsourcing and unsupervised ensemble learning. First, we prove that the popular model of Dawid and Skene, which assumes that all classifiers are conditionally independent, is equivalent to a Restricted Boltzmann Machine (RBM) with a single hidden node. Hence, under this model, the posterior probabilities of the true labels ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Road Materials and Pavement Design

سال: 2021

ISSN: ['2164-7402', '1468-0629']

DOI: https://doi.org/10.1080/14680629.2021.1886160